EncodeObject/DecodeObject Functions

These are generalized encoding and decoding functions, capable of encoding and decoding certificates and certificate revocation lists (CRLs).

The functions definitions can be found in Wincrypt.h.

Function�Description����DecodeObject�Decodes a structure of type lpszStructureType.��EncodeObject�Encodes a structure of type lpszStructureType.��

The following table lists the defined structure types that are used with encode and decode operations.

lpszStructureType�Corresponding Data Structure����<< Not defined at document print time >>�CERT_INFO��<< Not defined at document print time >>�CERT_REQUEST_INFO��<< Not defined at document print time >>�CRL_INFO��<< Not defined at document print time >>�EXTENSIONS��<< Not defined at document print time >>�NAME_INFO��<< Not defined at document print time >>�NAME_VALUE��<< Not defined at document print time >>�PUBLIC_KEY_INFO��

DecodeObject

#include <wincrypt.h>

BOOL WINAPI DecodeObject(��� DWORD dwEncodingType,�// in�� LPCSTR lpszStructureType,�// in�� const BYTE * pbEncoded,�// in�� DWORD cbEncoded,�// in�� void * pvoid,�// out�� DWORD * pcbStructInfo�// in/out��);���

Decodes a structure of type lpszStructureType.

Parameters

dwEncodingType

Specifies the encoding standard to use. The following values are defined.

Certificate Encoding Type�Value����X509_ASN_ENCODING�0x00010001��X509_NDR_ENCODING�0x00010002��

lpszStructureType

A pointer to an OID defining the structure type. If the high-order word of the lpszStructureType parameter is zero, the low order word specifies the integer identifier for the type of the given structure. Otherwise, this parameters is a long pointer to a null-terminated string. If the first character of the string is a pound sign (#), the remaining characters represent a decimal number that specifies the integer identifier for the structure type. For example, the string “#258” represents the integer identifier 258.

pbEncoded

A pointer to the encoded structure.

cbEncoded

The number of bytes pointed to by pbEncoded.

pvoid

Points to a buffer that receives the decoded structure.

This parameter can be NULL if it is desired to get the size of the information structure for memory allocation purposes. See the “Remarks” section that follows.

pcbStructInfo

Points to a variable that specifies the size, in bytes, of the buffer pointed to by the pvoid parameter. When the function returns, this variable contains the size of the decoded data copied to pvoid. The size contained in the variable pointed to by pcbStructInfo may indicate a size larger than the decoded structure, as the decoded structure may have pointers to auxiliary data. This size will be the sum of the size needed by the decoded structure and the auxiliary data.

Return Value

TRUE if this function succeeded. FALSE if this function failed. Call GetLastError to see the reason for the failure.

Remarks

If the buffer specified by the pvoid parameter is not large enough to hold the decoded data, the function sets the ERROR_MORE_DATA code (which can be seen by calling GetLastError), and stores the required buffer size, in bytes, into the variable pointed to by pcbStructInfo.

If pvoid is NULL, and pcbStructInfo is non-NULL, the functions sets the ERROR_SUCCESS code (which can be seen by calling GetLastError), and stores the size of the decoded data, in bytes, in the variable pointed to by pcbStructInfo. This lets an application determine the size of, and the best way to allocate, a buffer for the decoded message.

Example

// EXAMPLE CODE FOR USING DecodeObject() - TBD

See Also

EncodeObject

EncodeObject

#include <wincrypt.h>

BOOL WINAPI EncodeObject(��� DWORD dwEncodingType,�// in�� LPCSTR lpszStructureType,�// in�� void * pvoid,�// in�� BYTE * pbEncoded,�// out�� DWORD * pcbEncoded�// in/out��);���

Encodes a structure of type lpszStructureType.

Parameters

dwEncodingType

Specifies the encoding standard to use. The following values are defined.

Certificate Encoding Type�Value����X509_ASN_ENCODING�0x00010001��X509_NDR_ENCODING�0x00010002��

lpszStructureType

A pointer to an OID defining the structure type. If the high-order word of the lpszStructureType parameter is zero, the low order word specifies the integer identifier for the type of the given structure. Otherwise, this parameters is a long pointer to a null-terminated string. If the first character of the string is a pound sign (#), the remaining characters represent a decimal number that specifies the integer identifier for the structure type. For example, the string “#258” represents the integer identifier 258.

pvoid

A pointer to the structure to be encoded. The structure must be of a type specified by lpszStructureType.

pbEncoded

Points to a buffer that receives the encoded structure. This parameter can be NULL if it is desired to get the size of the encoded data for memory allocation purposes. See the “Remarks” section that follows.

pcbEncoded

Points to a variable that specifies the size, in bytes, of the buffer pointed to by the pbEncoded parameter. When the function returns, this variable contains the size of the encoded data copied to pbEncoded.

Return Value

TRUE if this function succeeded. FALSE if this function failed. Call GetLastError to see the reason for the failure.

Remarks

If the buffer specified by the pbEncoded parameter is not large enough to hold the encoded data, the function sets the ERROR_MORE_DATA code (which can be seen by calling GetLastError), and stores the required buffer size, in bytes, into the variable pointed to by pcbEncoded.

If pbEncoded is NULL, and pcbEncoded is non-NULL, the functions sets the ERROR_SUCCESS code (which can be seen by calling GetLastError), and stores the size of the encoded data, in bytes, in the variable pointed to by pcbEncoded. This lets an application determine the size of, and the best way to allocate, a buffer for the encoded message.

Example

// EXAMPLE CODE FOR USING EncodeObject() - TBD

See Also

DecodeObject

�PAGE�144� Part 2 Application Programmer’s Reference

	� STYLEREF Ch * MERGEFORMAT �EncodeObject/DecodeObject Functions� �PAGE�143�

	�PAGE�141�

